54 research outputs found

    Phosphorylation of Kif26b Promotes Its Polyubiquitination and Subsequent Proteasomal Degradation during Kidney Development

    Get PDF
    Kif26b, a member of the kinesin superfamily proteins (KIFs), is essential for kidney development. Kif26b expression is restricted to the metanephric mesenchyme, and its transcription is regulated by a zinc finger transcriptional regulator Sall1. However, the mechanism(s) by which Kif26b protein is regulated remain unknown. Here, we demonstrate phosphorylation and subsequent polyubiquitination of Kif26b in the developing kidney. We find that Kif26b interacts with an E3 ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4) in developing kidney. Phosphorylation of Kif26b at Thr-1859 and Ser-1962 by the cyclin-dependent kinases (CDKs) enhances the interaction of Kif26b with Nedd4. Nedd4 polyubiquitinates Kif26b and thereby promotes degradation of Kif26b via the ubiquitin-proteasome pathway. Furthermore, Kif26b lacks ATPase activity but does associate with microtubules. Nocodazole treatment not only disrupts the localization of Kif26b to microtubules but also promotes phosphorylation and polyubiquitination of Kif26b. These results suggest that the function of Kif26b is microtubule-based and that Kif26b degradation in the metanephric mesenchyme via the ubiquitin-proteasome pathway may be important for proper kidney development

    Stem Cell Factor SALL4 Represses the Transcriptions of PTEN and SALL1 through an Epigenetic Repressor Complex

    Get PDF
    Background The embryonic stem cell (ESC) factor, SALL4, plays an essential role in both development and leukemogenesis. It is a unique gene that is involved in self-renewal in ESC and leukemic stem cell (LSC).Methodology/Principal Findings To understand the mechanism(s) of SALL4 function(s), we sought to identify SALL4-associated proteins by tandem mass spectrometry. Components of a transcription repressor Mi-2/Nucleosome Remodeling and Deacetylase (NuRD) complex were found in the SALL4-immunocomplexes with histone deacetylase (HDAC) activity in ESCs with endogenous SALL4 expression and 293T cells overexpressing SALL4. The SALL4-mediated transcriptional regulation was tested on two potential target genes: PTEN and SALL1. Both genes were confirmed as SALL4 downstream targets by chromatin-immunoprecipitation, and their expression levels, when tested by quantitative reverse transcription polymerase chain reaction (qRT-PCR), were decreased in 293T cells overexpressing SALL4. Moreover, SALL4 binding sites at the promoter regions of PTEN and SALL1 were co-occupied by NuRD components, suggesting that SALL4 represses the transcriptions of PTEN and SALL1 through its interactions with the Mi-2/NuRD complex. The in vivo repressive effect(s) of SALL4 were evaluated in SALL4 transgenic mice, where decreased expressions of PTEN and SALL1 were associated with myeloid leukemia and cystic kidneys, respectively.Conclusions/Significance In summary, we are the first to demonstrate that stem cell protein SALL4 represses its target genes, PTEN and SALL1, through the epigenetic repressor Mi-2/NuRD complex. Our novel finding provides insight into the mechanism(s) of SALL4 functions in kidney development and leukemogenesis

    High-Efficiency Stem Cell Fusion-Mediated Assay Reveals Sall4 as an Enhancer of Reprogramming

    Get PDF
    Several methods allow reprogramming of differentiated somatic cells to embryonic stem cell-like cells. However, the process of reprogramming remains inefficient and the underlying molecular mechanisms are poorly understood. Here, we report the optimization of somatic cell fusion with embryonic stem cells in order to provide an efficient, quantitative assay to screen for factors that facilitate reprogramming. Following optimization, we achieved a reprogramming efficiency 15–590 fold higher than previous protocols. This allowed observation of cellular events during the reprogramming process. Moreover, we demonstrate that overexpression of the Spalt transcription factor, Sall4, which was previously identified as a regulator of embryonic stem cell pluripotency and early mouse development, can enhance reprogramming. The reprogramming activity of Sall4 is independent of an N-terminal domain implicated in recruiting the nucleosome remodeling and deacetylase corepressor complex, a global transcriptional repressor. These results indicate that improvements in reprogramming assays, including fusion assays, may allow the systematic identification and molecular characterization of enhancers of somatic cell reprogramming

    Early programming of the oocyte epigenome temporally controls late prophase I transcription and chromatin remodelling

    Get PDF
    Oocytes are arrested for long periods of time in the prophase of the first meiotic division (prophase I). As chromosome condensation poses significant constraints to gene expression, the mechanisms regulating transcriptional activity in the prophase I-arrested oocyte are still not entirely understood. We hypothesized that gene expression during the prophase I arrest is primarily epigenetically regulated. Here we comprehensively define the Drosophila female germ line epigenome throughout oogenesis and show that the oocyte has a unique, dynamic and remarkably diversified epigenome characterized by the presence of both euchromatic and heterochromatic marks. We observed that the perturbation of the oocyte's epigenome in early oogenesis, through depletion of the dKDM5 histone demethylase, results in the temporal deregulation of meiotic transcription and affects female fertility. Taken together, our results indicate that the early programming of the oocyte epigenome primes meiotic chromatin for subsequent functions in late prophase I

    An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior

    No full text
    Developmental nicotine exposure causes persistent changes in cortical neuron morphology and in behavior. We used microarray screening to identify master transcriptional or epigenetic regulators mediating these effects of nicotine and discovered increases in Ash2lmRNA, encoding a component of a histone methyltransferase complex. We therefore examined genome-wide changes in trimethylation of histone H3 on Lys4 (H3K4me3), a mark induced by the Ash2l complex associated with increased gene transcription. A large proportion of regulated promoter sites were involved in synapse maintenance. We found that Mef2c interacts with Ash2l and mediates changes in H3K4me3. Knockdown of Ash2l or Mef2c abolished nicotine-mediated alterations of dendritic complexity in vitro and in vivo, and attenuated nicotine-dependent changes in passive avoidance behavior. In contrast, overexpression mimicked nicotine-mediated alterations of neuronal structure and passive avoidance behavior. These studies identify Ash2l as a target induced by nicotinic stimulation that couples developmental nicotine exposure to changes in brain epigenetic marks, neuronal structure and behavior

    RNAs interact with BRD4 to promote enhanced chromatin engagement and transcription activation

    No full text
    The bromodomain and extra-terminal motif (BET) protein BRD4 binds to acetylated histones at enhancers and promoters via its bromodomains (BDs) to regulate transcriptional elongation. In human colorectal cancer cells, we found that BRD4 was recruited to enhancers that were co-occupied by mutant p53 and supported the synthesis of enhancer-directed transcripts (eRNAs) in response to chronic immune signaling. BRD4 selectively associated with eRNAs that were produced from BRD4-bound enhancers. Using biochemical and biophysical methods, we found that BRD4 BDs function cooperatively as docking sites for eRNAs and that the BDs of BRD2, BRD3, BRDT, BRG1, and BRD7 directly interact with eRNAs. BRD4-eRNA interactions increased BRD4 binding to acetylated histones in vitro and augmented BRD4 enhancer recruitment and transcriptional cofactor activities. Our results suggest a mechanism by which eRNAs are directly involved in gene regulation by modulating enhancer interactions and transcriptional functions of BRD4
    • …
    corecore